Technical specification

High-dynamic PMSM-Motors

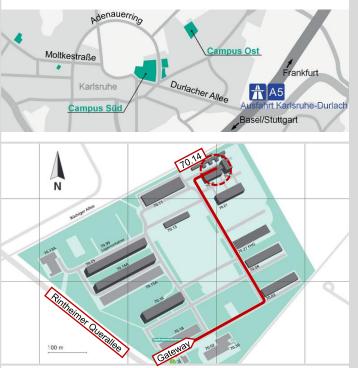
 Power nom.: 	2 x 1,5 kW
 Speed max.: 	6.000 min ⁻¹
 Torque nom./max.: 	2,4 / 10,3 Nm
 Rotor inertia: 	0,67 · 10 ⁻⁴ kgm ²

Linear actuator

•	Force:	1000 N
•	Operation speed:	25 mm/s
•	Resolution:	10 µ/step

Flexible applicable mounting plate

•	Lenght:	1430 mm
•	Depth:	752 mm


Real-Time-Environment

- Jäger ADwin-Pro II: Drivetrain-simulation and digital signal processing with frequency up to 20 kHz
- Control by flexible MATLAB[®]/Simulink[®]-Models
- Analog and digital interfaces
- FPGA signal I/O
- Optional: xPC-Target, Linux RTAI

Contact

Karlsruhe Institute o			
IPEK Institute of P	roduct Engineering		
DrIng. Matthias Behrendt			
Leader of research group NVH/Driveability			
Campus Ost			
Rintheimer Querallee 2, Building 70.14			
76131 Karlsruhe			
Phone:	+49 (0) 721 608-46470		
Mail:	Matthias.Behrendt@kit.edu		

www.ipek.kit.edu

Organizational Questions

Steven Yan	+49 (0) 721 608-47271	
E-Mail:	steven.yan@kit.edu	
Updated February 2018 © IPEK 2018		

www.kit.edu

Mini-HiL

Mini-Hardware-in-the-Loop-Test Bench As Development and Validation Platform

IPEK • Institute of Product Engineering

Features

Flexible test set-up

The grooved clamping plate allows the flexible and rapid construction of various experiments in smaller and therefore more cost-effective size.

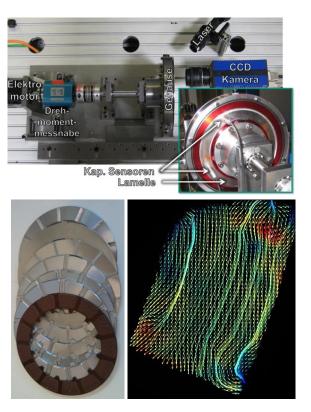
Accessibility of the actuators and sensors

Different actuators and sensors are available, which are used as required. The open design allows for quick installation and access to all relevant components.

Validation of simulation models

The experimental test environment is used to validate simulation approaches with little complexity of the test setup, meaningfully. By creating new knowledge the test set-up can thus be used to optimize the SiD -System in Development.

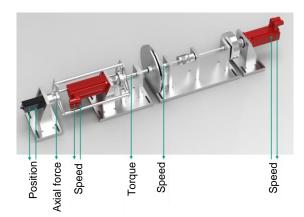
Development environment for control algorithms

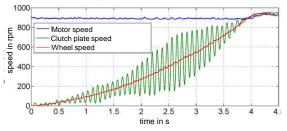

Due to the low power the Mini-HiL provides an ideal platform for the development and optimization of control algorithms, which are then used in a more powerful test bench.

Application Example

Development and validation environment for plate designs

Analyzing the behavior of a single, axially freely movable or fixed clutch plate with respect to the drag torque considering influences such as tumbling, oil viscosity or clearance:


- Optical measurement of the oil flow between the driven body and freely rotatable clutch plate.
- Validation of flow models, which can be used as a basis for improvement of wet-running starting clutches.


Application Example

Validation of control algorithms and real-time systems using the example of clutch judder

- Due to the large speed range, only the moments of inertia and torque are to scale
- Virtual representation of different vehicles through real-time simulation
- Physical representation caused by contact pressure and friction pairing vibration phenomena in the clutch
- Virtual and physical representation of the rest of the system vehicle as a multi mass oscillator
- Testing of active measures for regulating the friction vibrations

Test bench measurement

