Technical specifications

High Dynamic Primemover / Drive

•	Power nom./max.:	250 / 500 kW
•	Speed nom./max.:	6.000 / 10.000 rpm
•	Torque nom./max.:	400 / 800 Nm
•	Torque excitation:	up to 300 Hz
•	Rotor inertia:	0,047 kgm²

Wheel Road Machines (2x)

Power nom./max.:	ea. 200 / 250 kW
Speed max.:	3.000 rpm
 Torque nom./max.: 	ea. 2.500 / 3.500 Nm
 Rotor inertia: 	ea. 0,95 kgm²

Clutch Actuator

•	Force max.:	2.000 N
•	Actuating speed max .:	0,8 m/s

IPEK Gear Shifting Robot

 Working area: 	300 x 250 mm
 Force max.: 	500 N
 Actuating speed max 	.: 1,5 m/s

Control: Force and Position

IPEK Gear Shifting Robot in operation

Contact

Karlsruhe Institute of Technology (KIT) IPEK • Institute of Product Engineering

Dipl.-Ing. Sascha Ott Managing Director

Campus South, Building 50.33

Gotthard-Franz-Straße 9 | 76131 KarlsruhePhone+49 721 608-43681E-Mailsascha.ott@kit.edu

www.ipek.kit.edu

Publisher

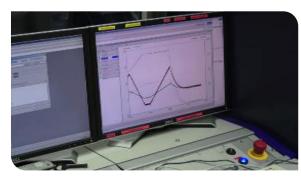
IPEK • Institute of Product Engineering Kaiserstraße 10 | 76131 Karlsruhe

Updated March 2019 © IPEK 2019

www.kit.edu

PLP

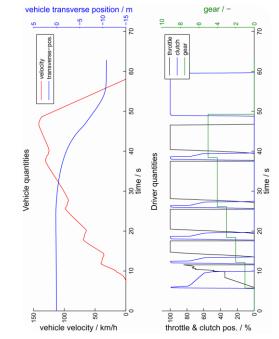
Powertrain-in-the-Loop Test Bench


IPEK • Institute of Product Engineering

www.kit.edu

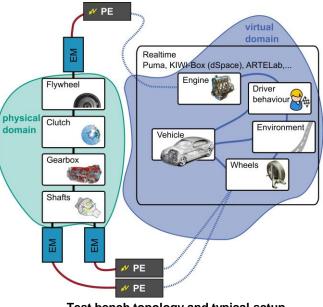
Capabilities

- Setup of a whole drive train (two-wheel drive)
- Simulation of combustion engine characteristics
- Reproducing of tire slip by dynamic wheel road engines for µ-split/jump and snap-start-maneuver
- Identification of potential limitations of current torsional damper systems to reduce nonuniformities in drive trains
- Sectioning of a drive train in physical and virtual subsystems by variable interfaces



Application examples

Investigations by connection of physical and virtual subsystems


- Track stability upon tip-in maneuvers by simulation of the remaining system using AVL InMotion / Carmaker
- Full load acceleration with manual gear shifting by IPEK gear shifting robot
- Gearbox efficiency testing (e.g. during drive cycle)

Investigation example

- Physical NVH investigations of drive trains using combustion engine simulation, e.g. gear rattle and dynamic transmission behavior
- Maneuver based parametrization of the drive train for electrical and conventional application
- Analysis of drive train vibrations during transient maneuver such as start-up or shifting procedures to analyze the sensitivity for clutch judder phenomena
- Determination of torque peaks in the drive train in consideration of tire slippage during different maneuvers e.g. alternating loads caused by µ-split
- Investigation of endurance and performance qualities of the drive train
- Abuse load simulation with tire behavior model

Test bench topology and typical setup