Technical specifications

Dyno performance

- Nominal power:
- Overload:
- Max. speed.:
- Max. drag force:
- 250 km/h (694 rpm) 10,5 kN at 80 km/h 4,9 kN at 250 km/h

220 kW per axle

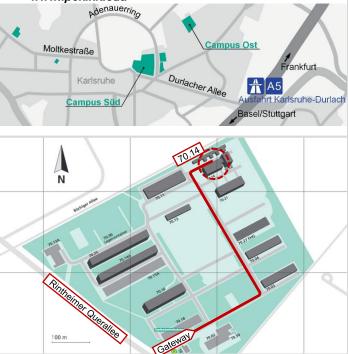
330 kW

Roller

•	Roller diameter:	1.910 mm
•	Vehicle wheelbase:	2.300 - 3.400 mm
•	Vehicle width:	900 - 2.300 mm
•	Roller width:	700 mm
•	Max. load per axle:	3.000 kg

Acoustic chamber

•	Clear length:	14,0 m
•	Clear width:	10,7 m
•	Clear height:	6,0 m
•	cut-off frequency:	63 Hz (third-octave
		band)


Vehicle fixation

- Single-point driveability fixation rear, via trailer coupling
- Two-point fixation front and rear, hook fixation and/or tension belt via tow coupling
- Four-point axle leg fixation, tension belt
- Four-point wheel hub fixation

Contact

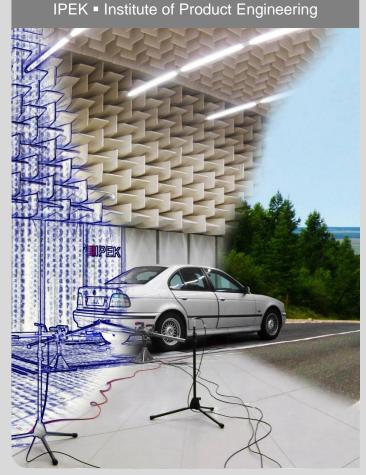
Karlsruhe Institute of Technology (KIT) IPEK Institute of Product Engineering Dr.-Ing. Matthias Behrendt Leader of research group NVH/Driveability Campus Ost Rintheimer Querallee 2, Building 70.14 76131 Karlsruhe Phone: +49 (0) 721 608-46470

Mail: www.ipek.kit.edu

Matthias.Behrendt@kit.edu

Organizational Questions

Chris König	+49 (0) 721 608-42995	
Mail:	Chris.Koenig@kit.edu	
Updated February © IPEK 2018		


www.kit.edu

ARP

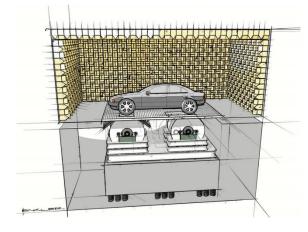
Acoustic Roller Test Bench with Vehicle-in-the-Loop-Technology

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Research

The acoustic chassis dyno with Vehicle-in-the-Loop technology and two driven axles is feasible for investigations in acoustics and vibrations of passenger cars under real road conditions. The chassis dyno is surrounded by a semi-anechoic acoustic chamber (DIN EN ISO 3745, accuracy class 1, lower cut-off frequency 63 Hz, third-octave band)



Main research

- NVH investigations in acoustics, vibrations and driving comfort
- Design of validation environments and methods according to the IPEK x-in-the-loop approach for drive systems
- Investigation and evaluation of driveability
- Operation- and drive-strategies
- Modeling, parameter identification and verification
- Virtual car
- Driver models and test run automation
- Area of conflict: performance, safety, energy efficiency
- Multi-domain-optimization (MDO)
- Comfort objectification
- Vehicle performance test
- Fuel consumption measurement
- Emission measurement

Instrumentation / Sensors

- Binaural artificial head
- Binaural microphone
- Near- and free field microphones
- Triaxial vibration sensors
- Uniaxial vibration sensors incl. calibration equipment
- Laser surface velocimeter
- Handheld speedometer with analogue output
- Infrared camera

Frontend (LMS SCADAS Mobile)

- 32 free configurable measuring channels
- CAN bus input

Frontend (AFT Tornado)

- 32 digital and 28 analogue input
- 12 PWM-input
- 4 CAN interfaces

Driving robot (Stähle SAP 2000)

- Accelerator-, brake-, clutch pedal
- Shifting (manual, automatic), ignition
- Driving cycle (fuel consumption, etc.)

Mobile fuel consumption measurement system (AVL KMA Mobile)

- All normal fuels and biofuels
- Range 0,35 150 l/h
- RS232-, TTL- or analogue interface
- 12 V power supply

3D sound intensity probe (LMS SoundBrush)

- Frequency range: 100 4.000 Hz
- Dynamic range: 33 dB(A) 150 dB

3D scanning vibrometer (Polytec PSV 400)

- Contactless acquisition of 3D surface vibrations
- Target size 1 mm² up to several m²
- 512 x 512 measuring points per scan

Chassis dyno controller

- Flexible test run and maneuver definition (set point of drag force and driving speed)
- Drive cycles and load spectrum in road-loadsimulation

Driveability evaluation (AVL DRIVE™)

- Objective evaluation in real time (VDI 2563)
- Uses ca. 450 criteria
- Evaluation of 75 driving states