Nehal Atef Afifi, M. Sc.

Nehal Atef Afifi, M. Sc.

Nehal Afifi, M. Sc.

Research Field:

My research primarily focuses on the application of data-driven methods namely: Statistical Learning, Machine Learning and Deep Learning in testing and validation. This approach can be applied to various machine elements, providing valuable insights that aid in product development.

Main Research Topics:

  • Data-Driven Testing: Developing robust testing strategies for machine elements by utilizing data, which address the gap in traditional testing methods.
  • Validation Techniques: Employing data-driven methodologies to ensure accurate validation of machine element performance and reliability, especially in complex systems.
  • Product Development: Leveraging insights from data analysis to enhance the development of more efficient and dependable machine elements, aiming to innovate product development processes.

Bachelor-/Masterarbeiten

  • Currently open Bachelor- or Master theses are to be found here.

Publications

You can also find an overview of the publications at https://www.researchgate.net/profile/Nehal-Afifi-6

Publications


2025
Towards precision in bolted joint design: a preliminary machine learning-based parameter prediction
Boujnah, I.; Afifi, N.; Wettstein, A.; Matthiesen, S.
2025. Proceedings of the Design Society, 5, 3211–3220. doi:10.1017/pds.2025.10335
Data-Driven Decision-Making: Leveraging Digital Twins for Reprocessing in the Circular Factory
Afifi, N.; Mas, V.; Hemmerich, J.; Leitenberger, F.; Hoffmann, L.; Darijani, A.; Grauberger, P.; Heizmann, M.; Beyerer, J.; Matthiesen, S.
2025. Zeitschrift für wirtschaftlichen Fabrikbetrieb, 120 (s1), 170–176. doi:10.1515/zwf-2024-0160
Probabilistic Reliability Analysis for Bolted Joints Considering Corrosion-Induced Failures
Afifi, N.; Kleinhans, L.; Leitenberger, F.; Matthiesen, S.
2025. Procedia CIRP, 136, 898–903. doi:10.1016/j.procir.2025.08.153
Towards Perpetual Innovative Products Through Circular Factories: Integration of Functional Behavior into System Reliability
Leitenberger, F.; Mas, V.; Afifi, N.; Kleinhans, L.; Hemmerich, J.; Matthiesen, S.
2025. Procedia CIRP, 136, 426–431. doi:10.1016/j.procir.2025.08.074
2024
Data-Driven Functional Modeling of Corroded Bolted Joints: A Framework for Remanufacturing
Afifi, N.; Kaiser, J.-P.; Wettstein, A.; Lanza, G.; Matthiesen, S.
2024. Proceedings of the ASME 2024 International Mechanical Engineering Congress and Exposition. Volume 11: Safety Engineering, Risk and Reliability Analysis; Research Posters, V011T14A028, The American Society of Mechanical Engineers (ASME). doi:10.1115/IMECE2024-145271